Representation of mean-periodic functions in series of exponential polynomials
Let \(\theta\) be a Young function and consider the space \(\mathcal{F}_{\theta}(\C)\) of all entire functions with \(\theta\)-exponential growth. In this paper, we are interested in the solutions \(f\in \mathcal{F}_{\theta}(\C)\) of the convolution equation \(T\star f=0\), called mean-periodic func...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2008-03 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(\theta\) be a Young function and consider the space \(\mathcal{F}_{\theta}(\C)\) of all entire functions with \(\theta\)-exponential growth. In this paper, we are interested in the solutions \(f\in \mathcal{F}_{\theta}(\C)\) of the convolution equation \(T\star f=0\), called mean-periodic functions, where \(T\) is in the topological dual of \(\mathcal{F}_{\theta}(\C)\). We show that each mean-periodic function can be represented in an explicit way as a convergent series of exponential polynomials. |
---|---|
ISSN: | 2331-8422 |