A sparse multidimensional FFT for real positive vectors
We present a sparse multidimensional FFT (sMFFT) randomized algorithm for real positive vectors. The algorithm works in any fixed dimension, requires (O(R log(R) log(N)) ) samples and runs in O( R log^2(R) log(N)) complexity (where N is the total size of the vector in d dimensions and R is the numbe...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a sparse multidimensional FFT (sMFFT) randomized algorithm for real positive vectors. The algorithm works in any fixed dimension, requires (O(R log(R) log(N)) ) samples and runs in O( R log^2(R) log(N)) complexity (where N is the total size of the vector in d dimensions and R is the number of nonzeros). It is stable to low-level noise and exhibits an exponentially small probability of failure. |
---|---|
ISSN: | 2331-8422 |