Kolmogorov type inequalities for the Marchaud fractional derivatives on the real line and the half-line

In this paper we establish some new Kolmogorov type inequalities for the Marchaud and Hadamard fractional derivatives of functions defined on a real axis or semi-axis. Simultaneously we solve two related problems: the Stechkin problem on the best approximation of unbounded operators by bounded ones...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2014-10
Hauptverfasser: Babenko, V F, Churilova, M S, Parfinovych, N V, Skorokhodov, D S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we establish some new Kolmogorov type inequalities for the Marchaud and Hadamard fractional derivatives of functions defined on a real axis or semi-axis. Simultaneously we solve two related problems: the Stechkin problem on the best approximation of unbounded operators by bounded ones on a given class of elements and the problem of optimal recovery of operator on elements from some class given with prescribed error. Keywords: inequalities for derivatives, fractional derivatives, approx- imation of unbounded operators by bounded ones, optimal recovery of operators, ideal lattice.
ISSN:2331-8422