Kolmogorov type inequalities for the Marchaud fractional derivatives on the real line and the half-line
In this paper we establish some new Kolmogorov type inequalities for the Marchaud and Hadamard fractional derivatives of functions defined on a real axis or semi-axis. Simultaneously we solve two related problems: the Stechkin problem on the best approximation of unbounded operators by bounded ones...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2014-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we establish some new Kolmogorov type inequalities for the Marchaud and Hadamard fractional derivatives of functions defined on a real axis or semi-axis. Simultaneously we solve two related problems: the Stechkin problem on the best approximation of unbounded operators by bounded ones on a given class of elements and the problem of optimal recovery of operator on elements from some class given with prescribed error. Keywords: inequalities for derivatives, fractional derivatives, approx- imation of unbounded operators by bounded ones, optimal recovery of operators, ideal lattice. |
---|---|
ISSN: | 2331-8422 |