An adaptive \(O(\log n)\)-optimal policy for the online selection of a monotone subsequence from a random sample

Given a sequence of \(n\) independent random variables with common continuous distribution, we propose a simple adaptive online policy that selects a monotone increasing subsequence. We show that the expected number of monotone increasing selections made by such a policy is within \(O(\log n)\) of o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-12
Hauptverfasser: Arlotto, Alessandro, Wei, Yehua, Xie, Xinchang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a sequence of \(n\) independent random variables with common continuous distribution, we propose a simple adaptive online policy that selects a monotone increasing subsequence. We show that the expected number of monotone increasing selections made by such a policy is within \(O(\log n)\) of optimal. Our construction provides a direct and natural way for proving the \(O(\log n)\)-optimality gap. An earlier proof of the same result made crucial use of a key inequality of Bruss and Delbaen (2001) and of de-Poissonization.
ISSN:2331-8422
DOI:10.48550/arxiv.1605.03998