Conditional expanding bounds for two-variable functions over finite valuation rings
In this paper, we use methods from spectral graph theory to obtain some results on the sum-product problem over finite valuation rings \(\mathcal{R}\) of order \(q^r\) which generalize recent results given by Hegyvári and Hennecart (2013). More precisely, we prove that, for related pairs of two-vari...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we use methods from spectral graph theory to obtain some results on the sum-product problem over finite valuation rings \(\mathcal{R}\) of order \(q^r\) which generalize recent results given by Hegyvári and Hennecart (2013). More precisely, we prove that, for related pairs of two-variable functions \(f(x,y)\) and \(g(x,y)\), if \(A\) and \(B\) are two sets in \(\mathcal{R}^*\) with \(|A|=|B|=q^\alpha\), then \[\max\left\lbrace |f(A, B)|, |g(A, B)| \right\rbrace\gtrsim |A|^{1+\Delta(\alpha)},\] for some \(\Delta(\alpha)>0\). |
---|---|
ISSN: | 2331-8422 |