Unconditionally convergent multipliers and Bessel sequences
We prove that every unconditionally summable sequence in a Hilbert space can be factorized as the product of a square summable scalar sequence and a Bessel sequence. Some consequences on the representation of unconditionally convergent multipliers are obtained, thus providing positive answers to a c...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that every unconditionally summable sequence in a Hilbert space can be factorized as the product of a square summable scalar sequence and a Bessel sequence. Some consequences on the representation of unconditionally convergent multipliers are obtained, thus providing positive answers to a conjecture by Balazs and Stoeva in some particular cases. |
---|---|
ISSN: | 2331-8422 |