Generalization of Doob Decomposition Theorem and Risk Assessment in Incomplete Markets

In the paper, we introduce the notion of a local regular supermartingale relative to a convex set of equivalent measures and prove for it the necessary and sufficient conditions of optional Doob decomposition in the discrete case. This Theorem is a generalization of the famous Doob decomposition ont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-11
1. Verfasser: Gonchar, N S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gonchar, N S
description In the paper, we introduce the notion of a local regular supermartingale relative to a convex set of equivalent measures and prove for it the necessary and sufficient conditions of optional Doob decomposition in the discrete case. This Theorem is a generalization of the famous Doob decomposition onto the case of supermartingales relative to a convex set of equivalent measures. The description of all local regular supermartingales relative to a convex set of equivalent measures is presented. A notion of complete set of equivalent measures is introduced. We prove that every non negative bounded supermartingale relative to a complete set of equivalent measures is local regular. A new definition of fair price of contingent claim in incomplete market is given and a formula for fair price of Standard option of European type is found.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080628860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080628860</sourcerecordid><originalsourceid>FETCH-proquest_journals_20806288603</originalsourceid><addsrcrecordid>eNqNissKwjAQAIMgWLT_sOC5EFNbexXr6-BFxGuJusX0ka3Z9OLX-8AP8DQwMwMRqDieRdlcqZEImSsppUoXKkniQJy3aNHpxjy1N2SBSsiJLpDjldqO2Hzt6Y7ksAVtb3A0XMOSGZlbtB6Mhb39zA16hIN2NXqeiGGpG8bwx7GYbtan1S7qHD16ZF9U1Dv7ToWSmUxVlqUy_u96ASfGQWE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080628860</pqid></control><display><type>article</type><title>Generalization of Doob Decomposition Theorem and Risk Assessment in Incomplete Markets</title><source>Free E- Journals</source><creator>Gonchar, N S</creator><creatorcontrib>Gonchar, N S</creatorcontrib><description>In the paper, we introduce the notion of a local regular supermartingale relative to a convex set of equivalent measures and prove for it the necessary and sufficient conditions of optional Doob decomposition in the discrete case. This Theorem is a generalization of the famous Doob decomposition onto the case of supermartingales relative to a convex set of equivalent measures. The description of all local regular supermartingales relative to a convex set of equivalent measures is presented. A notion of complete set of equivalent measures is introduced. We prove that every non negative bounded supermartingale relative to a complete set of equivalent measures is local regular. A new definition of fair price of contingent claim in incomplete market is given and a formula for fair price of Standard option of European type is found.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Decomposition ; Equivalence ; Heckscher Ohlin principle ; Income redistribution ; Risk assessment ; Theorems</subject><ispartof>arXiv.org, 2016-11</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Gonchar, N S</creatorcontrib><title>Generalization of Doob Decomposition Theorem and Risk Assessment in Incomplete Markets</title><title>arXiv.org</title><description>In the paper, we introduce the notion of a local regular supermartingale relative to a convex set of equivalent measures and prove for it the necessary and sufficient conditions of optional Doob decomposition in the discrete case. This Theorem is a generalization of the famous Doob decomposition onto the case of supermartingales relative to a convex set of equivalent measures. The description of all local regular supermartingales relative to a convex set of equivalent measures is presented. A notion of complete set of equivalent measures is introduced. We prove that every non negative bounded supermartingale relative to a complete set of equivalent measures is local regular. A new definition of fair price of contingent claim in incomplete market is given and a formula for fair price of Standard option of European type is found.</description><subject>Decomposition</subject><subject>Equivalence</subject><subject>Heckscher Ohlin principle</subject><subject>Income redistribution</subject><subject>Risk assessment</subject><subject>Theorems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNissKwjAQAIMgWLT_sOC5EFNbexXr6-BFxGuJusX0ka3Z9OLX-8AP8DQwMwMRqDieRdlcqZEImSsppUoXKkniQJy3aNHpxjy1N2SBSsiJLpDjldqO2Hzt6Y7ksAVtb3A0XMOSGZlbtB6Mhb39zA16hIN2NXqeiGGpG8bwx7GYbtan1S7qHD16ZF9U1Dv7ToWSmUxVlqUy_u96ASfGQWE</recordid><startdate>20161128</startdate><enddate>20161128</enddate><creator>Gonchar, N S</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20161128</creationdate><title>Generalization of Doob Decomposition Theorem and Risk Assessment in Incomplete Markets</title><author>Gonchar, N S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20806288603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Decomposition</topic><topic>Equivalence</topic><topic>Heckscher Ohlin principle</topic><topic>Income redistribution</topic><topic>Risk assessment</topic><topic>Theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Gonchar, N S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonchar, N S</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Generalization of Doob Decomposition Theorem and Risk Assessment in Incomplete Markets</atitle><jtitle>arXiv.org</jtitle><date>2016-11-28</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>In the paper, we introduce the notion of a local regular supermartingale relative to a convex set of equivalent measures and prove for it the necessary and sufficient conditions of optional Doob decomposition in the discrete case. This Theorem is a generalization of the famous Doob decomposition onto the case of supermartingales relative to a convex set of equivalent measures. The description of all local regular supermartingales relative to a convex set of equivalent measures is presented. A notion of complete set of equivalent measures is introduced. We prove that every non negative bounded supermartingale relative to a complete set of equivalent measures is local regular. A new definition of fair price of contingent claim in incomplete market is given and a formula for fair price of Standard option of European type is found.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2080628860
source Free E- Journals
subjects Decomposition
Equivalence
Heckscher Ohlin principle
Income redistribution
Risk assessment
Theorems
title Generalization of Doob Decomposition Theorem and Risk Assessment in Incomplete Markets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A45%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Generalization%20of%20Doob%20Decomposition%20Theorem%20and%20Risk%20Assessment%20in%20Incomplete%20Markets&rft.jtitle=arXiv.org&rft.au=Gonchar,%20N%20S&rft.date=2016-11-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2080628860%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2080628860&rft_id=info:pmid/&rfr_iscdi=true