Generalization of Doob Decomposition Theorem and Risk Assessment in Incomplete Markets
In the paper, we introduce the notion of a local regular supermartingale relative to a convex set of equivalent measures and prove for it the necessary and sufficient conditions of optional Doob decomposition in the discrete case. This Theorem is a generalization of the famous Doob decomposition ont...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-11 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the paper, we introduce the notion of a local regular supermartingale relative to a convex set of equivalent measures and prove for it the necessary and sufficient conditions of optional Doob decomposition in the discrete case. This Theorem is a generalization of the famous Doob decomposition onto the case of supermartingales relative to a convex set of equivalent measures. The description of all local regular supermartingales relative to a convex set of equivalent measures is presented. A notion of complete set of equivalent measures is introduced. We prove that every non negative bounded supermartingale relative to a complete set of equivalent measures is local regular. A new definition of fair price of contingent claim in incomplete market is given and a formula for fair price of Standard option of European type is found. |
---|---|
ISSN: | 2331-8422 |