Proposal of Real Time Predictive Maintenance Platform with 3D Printer for Business Vehicles

This paper proposes a maintenance platform for business vehicles which detects failure sign using IoT data on the move, orders to create repair parts by 3D printers and to deliver them to the destination. Recently, IoT and 3D printer technologies have been progressed and application cases to manufac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-01
Hauptverfasser: Yamato, Yoji, Fukumoto, Yoshifumi, Kumazaki, Hiroki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a maintenance platform for business vehicles which detects failure sign using IoT data on the move, orders to create repair parts by 3D printers and to deliver them to the destination. Recently, IoT and 3D printer technologies have been progressed and application cases to manufacturing and maintenance have been increased. Especially in air flight industry, various sensing data are collected during flight by IoT technologies and parts are created by 3D printers. And IoT platforms which improve development/operation of IoT applications also have been appeared. However, existing IoT platforms mainly targets to visualize "things" statuses by batch processing of collected sensing data, and 3 factors of real-time, automatic orders of repair parts and parts stock cost are insufficient to accelerate businesses. This paper targets maintenance of business vehicles such as airplane or high-speed bus. We propose a maintenance platform with real-time analysis, automatic orders of repair parts and minimum stock cost of parts. The proposed platform collects data via closed VPN, analyzes stream data and predicts failures in real-time by online machine learning framework Jubatus, coordinates ERP or SCM via in memory DB to order repair parts and also distributes repair parts data to 3D printers to create repair parts near the destination.
ISSN:2331-8422