The synthesis and mechanical properties of high pure Ti2Al(Sn)C solid solution
High pure Ti2Al(1−x)SnxC (x = 0‐1) powders were synthesized using Ti, Al, Sn, and TiC powders as raw materials by pressureless sintering method. The influence of sintering temperature and raw material ratio on the purity of Ti2AlC and Ti2Al0.8Sn0.2C powders were investigated. The results show that p...
Gespeichert in:
Veröffentlicht in: | International journal of applied ceramic technology 2018-09, Vol.15 (5), p.1212-1221 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High pure Ti2Al(1−x)SnxC (x = 0‐1) powders were synthesized using Ti, Al, Sn, and TiC powders as raw materials by pressureless sintering method. The influence of sintering temperature and raw material ratio on the purity of Ti2AlC and Ti2Al0.8Sn0.2C powders were investigated. The results show that pure Ti2AlC and Ti2Al0.8Sn0.2C powders were obtained from the mixed raw materials ratio of Ti:1.1Al:0.9TiC and Ti:0.9Al:0.2Sn:0.9TiC at 1450°C, respectively. Subsequently, fully dense Ti2AlC and Ti2Al0.8Sn0.2C bulks were prepared using mechanically alloying and hot pressed sintering method. The Vickers hardness of Ti2AlC and Ti2Al0.8Sn0.2C approaches approximately about 6 GPa and 4 GPa, the flexural strength was measured to be 650 ± 36 MPa and 521 ± 33 MPa, respectively. Microstructural analysis reveals that grain delamination, kink bands, and crack deflection occurred around the indentation area and at the fracture surface. |
---|---|
ISSN: | 1546-542X 1744-7402 |
DOI: | 10.1111/ijac.12902 |