Additive Combinatorics Using Equivariant Cohomology

We introduce a geometric method to study additive combinatorial problems. Using equivariant cohomology we reprove the Dias da Silva-Hamidoune theorem. We improve a result of Sun on the linear extension of the Erdős-Heilbronn conjecture. We generalize a theorem of G. Kós (the Grashopper problem) whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Fehér, László M, Nagy, János
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a geometric method to study additive combinatorial problems. Using equivariant cohomology we reprove the Dias da Silva-Hamidoune theorem. We improve a result of Sun on the linear extension of the Erdős-Heilbronn conjecture. We generalize a theorem of G. Kós (the Grashopper problem) which in some sense is a simultaneous generalization of the Erdős-Heilbronn conjecture. We also prove a signed version of the Erdős-Heilbronn conjecture and the Grashopper problem. Most identities used are based on calculating the projective degree of an algebraic variety in two different ways.
ISSN:2331-8422