Additive Combinatorics Using Equivariant Cohomology
We introduce a geometric method to study additive combinatorial problems. Using equivariant cohomology we reprove the Dias da Silva-Hamidoune theorem. We improve a result of Sun on the linear extension of the Erdős-Heilbronn conjecture. We generalize a theorem of G. Kós (the Grashopper problem) whic...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a geometric method to study additive combinatorial problems. Using equivariant cohomology we reprove the Dias da Silva-Hamidoune theorem. We improve a result of Sun on the linear extension of the Erdős-Heilbronn conjecture. We generalize a theorem of G. Kós (the Grashopper problem) which in some sense is a simultaneous generalization of the Erdős-Heilbronn conjecture. We also prove a signed version of the Erdős-Heilbronn conjecture and the Grashopper problem. Most identities used are based on calculating the projective degree of an algebraic variety in two different ways. |
---|---|
ISSN: | 2331-8422 |