Deep Spin-Glass Hysteresis Area Collapse and Scaling in the \(d=3\) \(\pm J\) Ising Model

We investigate the dissipative loss in the \(\pm J\) Ising spin glass in three dimensions through the scaling of the hysteresis area, for a maximum magnetic field that is equal to the saturation field. We perform a systematic analysis for the whole range of the bond randomness as a function of the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2012-09
Hauptverfasser: Sarıyer, Ozan S, Alkan Kabakcioglu, Berker, A Nihat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the dissipative loss in the \(\pm J\) Ising spin glass in three dimensions through the scaling of the hysteresis area, for a maximum magnetic field that is equal to the saturation field. We perform a systematic analysis for the whole range of the bond randomness as a function of the sweep rate, by means of frustration-preserving hard-spin mean field theory. Data collapse within the entirety of the spin-glass phase driven adiabatically (i.e., infinitely-slow field variation) is found, revealing a power-law scaling of the hysteresis area as a function of the antiferromagnetic bond fraction and the temperature. Two dynamic regimes separated by a threshold frequency \(\omega_c\) characterize the dependence on the sweep rate of the oscillating field. For \(\omega < \omega_c\), the hysteresis area is equal to its value in the adiabatic limit \(\omega = 0\), while for \(\omega > \omega_c\) it increases with the frequency through another randomness-dependent power law.
ISSN:2331-8422
DOI:10.48550/arxiv.1206.0230