Automorphism groups with cyclic commutator subgroup and Hamilton cycles
It has been shown that there is a Hamilton cycle in every connected Cayley graph on each group G whose commutator subgroup is cyclic of prime-power order. This paper considers connected, vertex-transitive graphs X of order at least 3 where the automorphism group of X contains a transitive subgroup G...
Gespeichert in:
Veröffentlicht in: | arXiv.org 1997-02 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It has been shown that there is a Hamilton cycle in every connected Cayley graph on each group G whose commutator subgroup is cyclic of prime-power order. This paper considers connected, vertex-transitive graphs X of order at least 3 where the automorphism group of X contains a transitive subgroup G whose commutator subgroup is cyclic of prime-power order. We show that of these graphs, only the Petersen graph is not hamiltonian. |
---|---|
ISSN: | 2331-8422 |