Automorphism groups with cyclic commutator subgroup and Hamilton cycles

It has been shown that there is a Hamilton cycle in every connected Cayley graph on each group G whose commutator subgroup is cyclic of prime-power order. This paper considers connected, vertex-transitive graphs X of order at least 3 where the automorphism group of X contains a transitive subgroup G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 1997-02
Hauptverfasser: Dobson, Edward, Gavlas, Heather, Morris, Joy, Witte, Dave
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It has been shown that there is a Hamilton cycle in every connected Cayley graph on each group G whose commutator subgroup is cyclic of prime-power order. This paper considers connected, vertex-transitive graphs X of order at least 3 where the automorphism group of X contains a transitive subgroup G whose commutator subgroup is cyclic of prime-power order. We show that of these graphs, only the Petersen graph is not hamiltonian.
ISSN:2331-8422