High-performance flexible all-solid-state aqueous rechargeable Zn–MnO2 microbatteries integrated with wearable pressure sensors

The ever-increasing demand for smart personal electronics has promoted the rapid development of wearable multiple functionalities integrated configurations. However, it is still a great challenge to realize both high-performance energy storage devices and functional sensors in a single device to obt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018, Vol.6 (30), p.14594-14601
Hauptverfasser: He, Bing, Zhang, Qichong, Li, Lianhui, Sun, Juan, Man, Ping, Zhou, Zhenyu, Li, Qiulong, Guo, Jiabin, Xie, Liyan, Li, Chaowei, Wang, Xiaona, Zhao, Jingxin, Zhang, Ting, Yao, Yagang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ever-increasing demand for smart personal electronics has promoted the rapid development of wearable multiple functionalities integrated configurations. However, it is still a great challenge to realize both high-performance energy storage devices and functional sensors in a single device to obtain a stable, self-powering, multifunctional, miniaturized integrated system. Herein, we report an ultrathin microbattery-pressure sensor integrated system to simultaneously achieve energy storage and pressure detection in a single device. Energy storage is achieved by an in-plane, interdigitated, flexible, all-solid-state, aqueous rechargeable Ni@MnO2//Zn microbattery in a thin polydimethylsiloxane film, using MnO2 nanosheets directly deposited on highly conductive 3D Ni skeletons (Ni@MnO2) as an advanced binder-free cathode. Benefiting from synergy between the high electrochemical performance of MnO2 and the outstanding conductivity of 3D highly conductive Ni skeletons, the assembled Ni@MnO2//Zn microbattery displays a high capacity of 0.718 mA h cm−2 and a correspondingly impressive energy density of 0.98 mW h cm−2. More importantly, the wearable pressure sensor, which is powered by the integrated Ni@MnO2//Zn microbattery, can achieve real-time health monitoring both statically and dynamically. Thus, this work paves the way to develop high-performance, multifunctional, miniaturized integrated configurations for portable and wearable electronics.
ISSN:2050-7488
2050-7496
DOI:10.1039/c8ta05862h