Virtual Embodiment: A Scalable Long-Term Strategy for Artificial Intelligence Research
Meaning has been called the "holy grail" of a variety of scientific disciplines, ranging from linguistics to philosophy, psychology and the neurosciences. The field of Artifical Intelligence (AI) is very much a part of that list: the development of sophisticated natural language semantics...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Meaning has been called the "holy grail" of a variety of scientific disciplines, ranging from linguistics to philosophy, psychology and the neurosciences. The field of Artifical Intelligence (AI) is very much a part of that list: the development of sophisticated natural language semantics is a sine qua non for achieving a level of intelligence comparable to humans. Embodiment theories in cognitive science hold that human semantic representation depends on sensori-motor experience; the abundant evidence that human meaning representation is grounded in the perception of physical reality leads to the conclusion that meaning must depend on a fusion of multiple (perceptual) modalities. Despite this, AI research in general, and its subdisciplines such as computational linguistics and computer vision in particular, have focused primarily on tasks that involve a single modality. Here, we propose virtual embodiment as an alternative, long-term strategy for AI research that is multi-modal in nature and that allows for the kind of scalability required to develop the field coherently and incrementally, in an ethically responsible fashion. |
---|---|
ISSN: | 2331-8422 |