On Mannheim Partner Curves in three Dimensional Lie Groups
In this paper, we define Mannheim partner curves in a three dimensional Lie group G with a bi-invariant metric. And then the main result in this paper is given as (Theorem 3.3): A curve {\alpha} with the Frenet apparatus {T,N,B,{\kappa},{\tau}} in G is a Mannheim partner curve if and only if {\lambd...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2012-11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we define Mannheim partner curves in a three dimensional Lie group G with a bi-invariant metric. And then the main result in this paper is given as (Theorem 3.3): A curve {\alpha} with the Frenet apparatus {T,N,B,{\kappa},{\tau}} in G is a Mannheim partner curve if and only if {\lambda}{\kappa}(1+H2)=1, where {\lambda} is constant and H is the harmonic curvature function of the curve {\alpha}. |
---|---|
ISSN: | 2331-8422 |