On Mannheim Partner Curves in three Dimensional Lie Groups

In this paper, we define Mannheim partner curves in a three dimensional Lie group G with a bi-invariant metric. And then the main result in this paper is given as (Theorem 3.3): A curve {\alpha} with the Frenet apparatus {T,N,B,{\kappa},{\tau}} in G is a Mannheim partner curve if and only if {\lambd...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2012-11
Hauptverfasser: İsmail Gök, O. Zeki Okuyucu, Ekmekci, Nejat, Yaylı, usuf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we define Mannheim partner curves in a three dimensional Lie group G with a bi-invariant metric. And then the main result in this paper is given as (Theorem 3.3): A curve {\alpha} with the Frenet apparatus {T,N,B,{\kappa},{\tau}} in G is a Mannheim partner curve if and only if {\lambda}{\kappa}(1+H2)=1, where {\lambda} is constant and H is the harmonic curvature function of the curve {\alpha}.
ISSN:2331-8422