An HJB Approach to a General Continuous-Time Mean-Variance Stochastic Control Problem
A general continuous mean-variance problem is considered for a diffusion controlled process where the reward functional has an integral and a terminal-time component. The problem is transformed into a superposition of a static and a dynamic optimization problem. The value function of the latter can...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A general continuous mean-variance problem is considered for a diffusion controlled process where the reward functional has an integral and a terminal-time component. The problem is transformed into a superposition of a static and a dynamic optimization problem. The value function of the latter can be considered as the solution to a degenerate HJB equation either in viscosity or in Sobolev sense (after a regularization) under suitable assumptions and with implications with regards to the optimality of strategies. There is a useful interplay between the two approaches -- viscosity and Sobolev. |
---|---|
ISSN: | 2331-8422 |