Derivation of Klein-Gordon-Fock equation from General relativity in a time-space symmetrical model

Following a bi-cylindrical model of geometrical dynamics, in the present study we show that Einstein gravitational equation leads to bi-geodesic description in an extended symmetrical time-space which fit Hubble expansion in a "microscopic" cosmological model. As a duality, the geodesic so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-05
1. Verfasser: Vo Van Thuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Following a bi-cylindrical model of geometrical dynamics, in the present study we show that Einstein gravitational equation leads to bi-geodesic description in an extended symmetrical time-space which fit Hubble expansion in a "microscopic" cosmological model. As a duality, the geodesic solution is mathematically equivalent to the basic Klein-Gordon-Fock equations of free massive elementary particles, in particular, as the squared Dirac equations of leptons and as a sub-solution with pseudo-axion. This result would serve an explicit approach to consistency between quantum mechanics and general relativity.
ISSN:2331-8422