Making an Embedded DBMS JIT-friendly

While database management systems (DBMSs) are highly optimized, interactions across the boundary between the programming language (PL) and the DBMS are costly, even for in-process embedded DBMSs. In this paper, we show that programs that interact with the popular embedded DBMS SQLite can be signific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-06
Hauptverfasser: Carl Friedrich Bolz, Kurilova, Darya, Tratt, Laurence
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:While database management systems (DBMSs) are highly optimized, interactions across the boundary between the programming language (PL) and the DBMS are costly, even for in-process embedded DBMSs. In this paper, we show that programs that interact with the popular embedded DBMS SQLite can be significantly optimized - by a factor of 3.4 in our benchmarks - by inlining across the PL / DBMS boundary. We achieved this speed-up by replacing parts of SQLite's C interpreter with RPython code and composing the resulting meta-tracing virtual machine (VM) - called SQPyte - with the PyPy VM. SQPyte does not compromise stand-alone SQL performance and is 2.2% faster than SQLite on the widely used TPC-H benchmark suite.
ISSN:2331-8422