Fréchet Barycenters and a Law of Large Numbers for Measures on the Real Line
Endow the space \(\mathcal{P}(\mathbb{R})\) of probability measures on \(\mathbb{R}\) with a transportation cost \(J(\mu, \nu)\) generated by a translation-invariant convex cost function. For a probability distribution on \(\mathcal{P}(\mathbb{R})\) we formulate a notion of average with respect to t...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-08 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Endow the space \(\mathcal{P}(\mathbb{R})\) of probability measures on \(\mathbb{R}\) with a transportation cost \(J(\mu, \nu)\) generated by a translation-invariant convex cost function. For a probability distribution on \(\mathcal{P}(\mathbb{R})\) we formulate a notion of average with respect to this transportation cost, called here the Fréchet barycenter, prove a version of the law of large numbers for Fréchet barycenters, and briefly discuss the structure of \(\mathcal{P}(\mathbb{R})\) related to the transportation cost \(J\). |
---|---|
ISSN: | 2331-8422 |