Connectivity Functions and Polymatroids
A {\em connectivity function on} a set \(E\) is a function \(\lambda:2^E\rightarrow \mathbb R\) such that \(\lambda(\emptyset)=0\), that \(\lambda(X)=\lambda(E-X)\) for all \(X\subseteq E\) and that \(\lambda(X\cap Y)+\lambda(X\cup Y)\leq \lambda(X)+\lambda(Y)\) for all \(X,Y \subseteq E\). Graphs,...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-05 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A {\em connectivity function on} a set \(E\) is a function \(\lambda:2^E\rightarrow \mathbb R\) such that \(\lambda(\emptyset)=0\), that \(\lambda(X)=\lambda(E-X)\) for all \(X\subseteq E\) and that \(\lambda(X\cap Y)+\lambda(X\cup Y)\leq \lambda(X)+\lambda(Y)\) for all \(X,Y \subseteq E\). Graphs, matroids and, more generally, polymatroids have associated connectivity functions. We introduce a notion of duality for polymatroids and prove that every connectivity function is the connectivity function of a self-dual polymatroid. We also prove that every integral connectivity function is the connectivity function of a half-integral self-dual polymatroid. |
---|---|
ISSN: | 2331-8422 |