The random \(k\) cycle walk on the symmetric group

We study the random walk on the symmetric group \(S_n\) generated by the conjugacy class of cycles of length \(k\). We show that the convergence to uniform measure of this walk has a cut-off in total variation distance after \(\frac{n}{k} log n\) steps, uniformly in \(k = o(n)\) as \(n \to \infty\)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-05
1. Verfasser: Hough, Bob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the random walk on the symmetric group \(S_n\) generated by the conjugacy class of cycles of length \(k\). We show that the convergence to uniform measure of this walk has a cut-off in total variation distance after \(\frac{n}{k} log n\) steps, uniformly in \(k = o(n)\) as \(n \to \infty\). The analysis follows from a new asymptotic estimation of the characters of the symmetric group evaluated at cycles.
ISSN:2331-8422