The random \(k\) cycle walk on the symmetric group
We study the random walk on the symmetric group \(S_n\) generated by the conjugacy class of cycles of length \(k\). We show that the convergence to uniform measure of this walk has a cut-off in total variation distance after \(\frac{n}{k} log n\) steps, uniformly in \(k = o(n)\) as \(n \to \infty\)....
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-05 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the random walk on the symmetric group \(S_n\) generated by the conjugacy class of cycles of length \(k\). We show that the convergence to uniform measure of this walk has a cut-off in total variation distance after \(\frac{n}{k} log n\) steps, uniformly in \(k = o(n)\) as \(n \to \infty\). The analysis follows from a new asymptotic estimation of the characters of the symmetric group evaluated at cycles. |
---|---|
ISSN: | 2331-8422 |