Fast Algorithms for Diameter-Optimally Augmenting Paths and Trees
We consider the problem of augmenting an n-vertex graph embedded in a metric space, by inserting one additional edge in order to minimize the diameter of the resulting graph. We present exact algorithms for the cases when (i) the input graph is a path, running in O(n \log^3 n) time, and (ii) the inp...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-07 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the problem of augmenting an n-vertex graph embedded in a metric space, by inserting one additional edge in order to minimize the diameter of the resulting graph. We present exact algorithms for the cases when (i) the input graph is a path, running in O(n \log^3 n) time, and (ii) the input graph is a tree, running in O(n^2 \log n) time. We also present an algorithm that computes a (1+\eps)-approximation in O(n + 1/\eps^3) time, for paths in R^d, where d is a constant. |
---|---|
ISSN: | 2331-8422 |