Fast Algorithms for Diameter-Optimally Augmenting Paths and Trees

We consider the problem of augmenting an n-vertex graph embedded in a metric space, by inserting one additional edge in order to minimize the diameter of the resulting graph. We present exact algorithms for the cases when (i) the input graph is a path, running in O(n \log^3 n) time, and (ii) the inp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-07
Hauptverfasser: Große, Ulrike, Gudmundsson, Joachim, Knauer, Christian, Smid, Michiel, Stehn, Fabian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the problem of augmenting an n-vertex graph embedded in a metric space, by inserting one additional edge in order to minimize the diameter of the resulting graph. We present exact algorithms for the cases when (i) the input graph is a path, running in O(n \log^3 n) time, and (ii) the input graph is a tree, running in O(n^2 \log n) time. We also present an algorithm that computes a (1+\eps)-approximation in O(n + 1/\eps^3) time, for paths in R^d, where d is a constant.
ISSN:2331-8422