On numerical Newton-Okounkov bodies and the existence of Minkowski bases
Towards the boundary of the big cone, Newton-Okounkov bodies do not vary continuously and in fact the body of a boundary class is not well defined. Using the global Okounkov body one can nonetheless define a numerical invariant, the numerical Newton-Okounkov body. We show that if a normal projective...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Towards the boundary of the big cone, Newton-Okounkov bodies do not vary continuously and in fact the body of a boundary class is not well defined. Using the global Okounkov body one can nonetheless define a numerical invariant, the numerical Newton-Okounkov body. We show that if a normal projective variety has a rational polyhedral global Okounkov body, it admits a Minkowski basis provided one includes numerical Newton-Okounkov bodies above non-big classes. Under the same assumption, we also show that the dimension of the numerical Newton-Okounkov body is the numerical Kodaira dimension. |
---|---|
ISSN: | 2331-8422 |