On numerical Newton-Okounkov bodies and the existence of Minkowski bases

Towards the boundary of the big cone, Newton-Okounkov bodies do not vary continuously and in fact the body of a boundary class is not well defined. Using the global Okounkov body one can nonetheless define a numerical invariant, the numerical Newton-Okounkov body. We show that if a normal projective...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-07
Hauptverfasser: Sawin, William F, Schmitz, David
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Towards the boundary of the big cone, Newton-Okounkov bodies do not vary continuously and in fact the body of a boundary class is not well defined. Using the global Okounkov body one can nonetheless define a numerical invariant, the numerical Newton-Okounkov body. We show that if a normal projective variety has a rational polyhedral global Okounkov body, it admits a Minkowski basis provided one includes numerical Newton-Okounkov bodies above non-big classes. Under the same assumption, we also show that the dimension of the numerical Newton-Okounkov body is the numerical Kodaira dimension.
ISSN:2331-8422