Partial orders on metric measure spaces

A partial order on the set of metric measure spaces is defined; it generalizes the Lipschitz order of Gromov. We show that our partial order is closed when metric measure spaces are equipped with the Gromov-weak topology and give a new characterization for the Lipschitz order. We will then consider...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-05
Hauptverfasser: Grieshammer, Max, Rippl, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A partial order on the set of metric measure spaces is defined; it generalizes the Lipschitz order of Gromov. We show that our partial order is closed when metric measure spaces are equipped with the Gromov-weak topology and give a new characterization for the Lipschitz order. We will then consider some probabilistic applications. The main importance is given to the study of Fleming-Viot processes with different resampling rates. Besides that application we also consider tree-valued branching processes and two semigroups on metric measure spaces.
ISSN:2331-8422