Detecting Serial Dependence in Binomial Time Series II: Observation Driven Models

The detection of serial dependence in binary or binomial valued time series is difficult using standard time series methods, particularly when there are regression effects to be modelled. In this paper we derive score-type tests for detecting departures from independence in the directions of the GLA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-06
Hauptverfasser: Dunsmuir, W T M, He, J Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Dunsmuir, W T M
He, J Y
description The detection of serial dependence in binary or binomial valued time series is difficult using standard time series methods, particularly when there are regression effects to be modelled. In this paper we derive score-type tests for detecting departures from independence in the directions of the GLARMA\ and BARMA\ type observation driven models. These score tests can easily be applied using a standard logistic regression and so may have appeal to practitioners who wish to initially assess the need to incorporate serial dependence effects. To deal with the nuisance parameters in some GLARMA models a supremum type test is implemented.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2079228547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2079228547</sourcerecordid><originalsourceid>FETCH-proquest_journals_20792285473</originalsourceid><addsrcrecordid>eNqNissKgkAUQIcgSMp_uNBamGY0rWVZ1CIici-mtxjROzYz-v096ANaHTjnjJgnpFwESSjEhPnW1pxzsYxFFEmPXVJ0WDpFD7iiUUUDKXZIFVKJoAg2inT70Zlq8bugheNxDeebRTMUTmmC1KgBCU66wsbO2PheNBb9H6dsvt9l20PQGf3s0bq81r2hd8oFj1dCJFEYy_-uFzC4PnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2079228547</pqid></control><display><type>article</type><title>Detecting Serial Dependence in Binomial Time Series II: Observation Driven Models</title><source>Free E- Journals</source><creator>Dunsmuir, W T M ; He, J Y</creator><creatorcontrib>Dunsmuir, W T M ; He, J Y</creatorcontrib><description>The detection of serial dependence in binary or binomial valued time series is difficult using standard time series methods, particularly when there are regression effects to be modelled. In this paper we derive score-type tests for detecting departures from independence in the directions of the GLARMA\ and BARMA\ type observation driven models. These score tests can easily be applied using a standard logistic regression and so may have appeal to practitioners who wish to initially assess the need to incorporate serial dependence effects. To deal with the nuisance parameters in some GLARMA models a supremum type test is implemented.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Time dependence ; Time series</subject><ispartof>arXiv.org, 2016-06</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Dunsmuir, W T M</creatorcontrib><creatorcontrib>He, J Y</creatorcontrib><title>Detecting Serial Dependence in Binomial Time Series II: Observation Driven Models</title><title>arXiv.org</title><description>The detection of serial dependence in binary or binomial valued time series is difficult using standard time series methods, particularly when there are regression effects to be modelled. In this paper we derive score-type tests for detecting departures from independence in the directions of the GLARMA\ and BARMA\ type observation driven models. These score tests can easily be applied using a standard logistic regression and so may have appeal to practitioners who wish to initially assess the need to incorporate serial dependence effects. To deal with the nuisance parameters in some GLARMA models a supremum type test is implemented.</description><subject>Time dependence</subject><subject>Time series</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNissKgkAUQIcgSMp_uNBamGY0rWVZ1CIici-mtxjROzYz-v096ANaHTjnjJgnpFwESSjEhPnW1pxzsYxFFEmPXVJ0WDpFD7iiUUUDKXZIFVKJoAg2inT70Zlq8bugheNxDeebRTMUTmmC1KgBCU66wsbO2PheNBb9H6dsvt9l20PQGf3s0bq81r2hd8oFj1dCJFEYy_-uFzC4PnQ</recordid><startdate>20160603</startdate><enddate>20160603</enddate><creator>Dunsmuir, W T M</creator><creator>He, J Y</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160603</creationdate><title>Detecting Serial Dependence in Binomial Time Series II: Observation Driven Models</title><author>Dunsmuir, W T M ; He, J Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20792285473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Time dependence</topic><topic>Time series</topic><toplevel>online_resources</toplevel><creatorcontrib>Dunsmuir, W T M</creatorcontrib><creatorcontrib>He, J Y</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dunsmuir, W T M</au><au>He, J Y</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Detecting Serial Dependence in Binomial Time Series II: Observation Driven Models</atitle><jtitle>arXiv.org</jtitle><date>2016-06-03</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>The detection of serial dependence in binary or binomial valued time series is difficult using standard time series methods, particularly when there are regression effects to be modelled. In this paper we derive score-type tests for detecting departures from independence in the directions of the GLARMA\ and BARMA\ type observation driven models. These score tests can easily be applied using a standard logistic regression and so may have appeal to practitioners who wish to initially assess the need to incorporate serial dependence effects. To deal with the nuisance parameters in some GLARMA models a supremum type test is implemented.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2079228547
source Free E- Journals
subjects Time dependence
Time series
title Detecting Serial Dependence in Binomial Time Series II: Observation Driven Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A23%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Detecting%20Serial%20Dependence%20in%20Binomial%20Time%20Series%20II:%20Observation%20Driven%20Models&rft.jtitle=arXiv.org&rft.au=Dunsmuir,%20W%20T%20M&rft.date=2016-06-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2079228547%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2079228547&rft_id=info:pmid/&rfr_iscdi=true