Detecting Serial Dependence in Binomial Time Series II: Observation Driven Models
The detection of serial dependence in binary or binomial valued time series is difficult using standard time series methods, particularly when there are regression effects to be modelled. In this paper we derive score-type tests for detecting departures from independence in the directions of the GLA...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-06 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The detection of serial dependence in binary or binomial valued time series is difficult using standard time series methods, particularly when there are regression effects to be modelled. In this paper we derive score-type tests for detecting departures from independence in the directions of the GLARMA\ and BARMA\ type observation driven models. These score tests can easily be applied using a standard logistic regression and so may have appeal to practitioners who wish to initially assess the need to incorporate serial dependence effects. To deal with the nuisance parameters in some GLARMA models a supremum type test is implemented. |
---|---|
ISSN: | 2331-8422 |