Rate of Convergence of Attractors for Singularly Perturbed Semilinear Problems

We exhibit a class of singularly perturbed parabolic problems which the asymptotic behavior can be described by a system of ordinary differential equation. We estimate the convergence of attractors in the Hausdorff metric by rate of convergence of resolvent operators. Application to spatial homogeni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-06
Hauptverfasser: Pires, Leonardo, Alexandre Nolasco de Carvalho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We exhibit a class of singularly perturbed parabolic problems which the asymptotic behavior can be described by a system of ordinary differential equation. We estimate the convergence of attractors in the Hausdorff metric by rate of convergence of resolvent operators. Application to spatial homogenization and large diffusion except in a neighborhood of a point will be considered.
ISSN:2331-8422