Permanence of stable rank one for centrally large subalgebras and crossed products by minimal homeomorphisms

We define centrally large subalgebras of simple unital C*-algebras, strengthening the definition of large subalgebras in previous work. We prove that if A is any infinite dimensional simple separable unital C*-algebra which contains a centrally large subalgebra with stable rank one, then A has stabl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-08
Hauptverfasser: Archey, Dawn, Phillips, N Christopher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We define centrally large subalgebras of simple unital C*-algebras, strengthening the definition of large subalgebras in previous work. We prove that if A is any infinite dimensional simple separable unital C*-algebra which contains a centrally large subalgebra with stable rank one, then A has stable rank one. We also prove that large subalgebras of crossed product type are automatically centrally large. We use these results to prove that if X is a compact metric space which has a surjective continuous map to the Cantor set, and h is a minimal homeomorphism of X, then C* (Z, X, h) has stable rank one, regardless of the dimension of X or the mean dimension of h. In particular, the Giol-Kerr examples give crossed products with stable rank one but which are not stable under tensoring with the Jiang-Su algebra and are therefore not classifiable in terms of the Elliott invariant.
ISSN:2331-8422