Relating tensor structures on representations of general linear and symmetric groups
For polynomial representations of \(GL_n\) of a fixed degree, H. Krause defined a new internal tensor product using the language of strict polynomial functors. We show that over an arbitrary commutative base ring \(k\), the Schur functor carries this internal tensor product to the usual Kronecker te...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-05 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For polynomial representations of \(GL_n\) of a fixed degree, H. Krause defined a new internal tensor product using the language of strict polynomial functors. We show that over an arbitrary commutative base ring \(k\), the Schur functor carries this internal tensor product to the usual Kronecker tensor product of symmetric group representations. This is true even at the level of derived categories. The new tensor product is a substantial enrichment of the Kronecker tensor product. E.g. in modular representation theory it brings in homological phenomena not visible on the symmetric group side. We calculate the internal tensor product over any \(k\) in several interesting cases involving classical functors and the Weyl functors. We show an application to the Kronecker problem in characteristic zero when one partition has two rows or is a hook. |
---|---|
ISSN: | 2331-8422 |