Electrochemical nucleation and growth of Cu onto Au nanoparticles supported on a Si (111) wafer electrode
This work showed that chemically-synthesized gold nanoparticles, AuNPs, supported onto a Si (111) wafer electrode, can be selectively modified with a copper adlayer through underpotential deposition (upd) conditions, using both: potentiodynamic or potentiostatic electrochemical means. From analysis...
Gespeichert in:
Veröffentlicht in: | Journal of electroanalytical chemistry (Lausanne, Switzerland) Switzerland), 2017-04, Vol.791, p.1-7 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work showed that chemically-synthesized gold nanoparticles, AuNPs, supported onto a Si (111) wafer electrode, can be selectively modified with a copper adlayer through underpotential deposition (upd) conditions, using both: potentiodynamic or potentiostatic electrochemical means. From analysis of experimental potentiostatic current density transients, it is shown that Cu upd onto the AuNPs occurs by a mechanism involving the simultaneous presence of a Langmuir-type adsorption-desorption and an instantaneous two-dimensional, 2D, nucleation process. The influence of the applied potential on the Cu upd kinetics and on the extent of Cu atoms coverage over the AuNPs was also reported. Furthermore, it is shown that the Cu overpotential deposition, opd, onto these AuNPs, starting from a potential in the upd region where the AuNPs surface is free from Cu atoms, occurs through a 2D-3D mechanism, where the 3D nucleation is mass-transfer controlled. Notwithstanding, when Cu opd started at the equilibrium potential the mechanism solely involved 3D nucleation.
[Display omitted]
•Au nanoparticles, AuNPs, were chemically synthesized•AuNPs were supported onto Si (111) wafer, Si (111)-AuNPs•Si (111)-AuNPs were used as electrode for Cu upd•From i-t plots the mechanism and kinetics of Cu upd were assessed•Mechanism involved simultaneous presence adsorption and 2D nucleation |
---|---|
ISSN: | 1572-6657 1873-2569 |
DOI: | 10.1016/j.jelechem.2017.03.003 |