Connecting the Kontsevich-Witten and Hodge tau-functions by the \(\hat{GL(\infty)}\) operators
In this paper, we present an explicit formula that connects the Kontsevich-Witten tau-function and the Hodge tau-function by differential operators belonging to the \(\hat{GL(\infty)}\) group. Indeed, we show that the two tau-functions can be connected using Virasoro operators. This proves a conject...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-02 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we present an explicit formula that connects the Kontsevich-Witten tau-function and the Hodge tau-function by differential operators belonging to the \(\hat{GL(\infty)}\) group. Indeed, we show that the two tau-functions can be connected using Virasoro operators. This proves a conjecture posted by Alexandrov in [1]. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1503.05268 |