Symbolic Powers of Monomial Ideals

We investigate symbolic and regular powers of monomial ideals. For a square-free monomial ideal \(I\) in \(k[x_0, \ldots, x_n]\) we show \(I^{t(m+e-1)-e+r)}\) is a subset of \(M^{(t-1)(e-1)+r-1}(I^{(m)})^t\) for all positive integers \(m\), \(t\) and \(r\), where \(e\) is the big-height of \(I\) and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-01
Hauptverfasser: Cooper, Susan M, Embree, Robert J D, Hà, Huy Tài, Hoefel, Andrew H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Cooper, Susan M
Embree, Robert J D
Hà, Huy Tài
Hoefel, Andrew H
description We investigate symbolic and regular powers of monomial ideals. For a square-free monomial ideal \(I\) in \(k[x_0, \ldots, x_n]\) we show \(I^{t(m+e-1)-e+r)}\) is a subset of \(M^{(t-1)(e-1)+r-1}(I^{(m)})^t\) for all positive integers \(m\), \(t\) and \(r\), where \(e\) is the big-height of \(I\) and \(M = (x_0, \ldots, x_n)\). This captures two conjectures (\(r=1\) and \(r=e\)): one of Harbourne-Huneke and one of Bocci-Cooper-Harbourne. We also introduce the symbolic polyhedron of a monomial ideal and use this to explore symbolic powers of non-square-free monomial ideals.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2078624481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078624481</sourcerecordid><originalsourceid>FETCH-proquest_journals_20786244813</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQCq7MTcrPyUxWCMgvTy0qVshPU_DNz8vPzUzMUfBMSU3MKeZhYE0DUqm8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2RgbmFmZGJiYWhMnCoASiUtoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078624481</pqid></control><display><type>article</type><title>Symbolic Powers of Monomial Ideals</title><source>Free eJournals</source><creator>Cooper, Susan M ; Embree, Robert J D ; Hà, Huy Tài ; Hoefel, Andrew H</creator><creatorcontrib>Cooper, Susan M ; Embree, Robert J D ; Hà, Huy Tài ; Hoefel, Andrew H</creatorcontrib><description>We investigate symbolic and regular powers of monomial ideals. For a square-free monomial ideal \(I\) in \(k[x_0, \ldots, x_n]\) we show \(I^{t(m+e-1)-e+r)}\) is a subset of \(M^{(t-1)(e-1)+r-1}(I^{(m)})^t\) for all positive integers \(m\), \(t\) and \(r\), where \(e\) is the big-height of \(I\) and \(M = (x_0, \ldots, x_n)\). This captures two conjectures (\(r=1\) and \(r=e\)): one of Harbourne-Huneke and one of Bocci-Cooper-Harbourne. We also introduce the symbolic polyhedron of a monomial ideal and use this to explore symbolic powers of non-square-free monomial ideals.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Integers</subject><ispartof>arXiv.org, 2016-01</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Cooper, Susan M</creatorcontrib><creatorcontrib>Embree, Robert J D</creatorcontrib><creatorcontrib>Hà, Huy Tài</creatorcontrib><creatorcontrib>Hoefel, Andrew H</creatorcontrib><title>Symbolic Powers of Monomial Ideals</title><title>arXiv.org</title><description>We investigate symbolic and regular powers of monomial ideals. For a square-free monomial ideal \(I\) in \(k[x_0, \ldots, x_n]\) we show \(I^{t(m+e-1)-e+r)}\) is a subset of \(M^{(t-1)(e-1)+r-1}(I^{(m)})^t\) for all positive integers \(m\), \(t\) and \(r\), where \(e\) is the big-height of \(I\) and \(M = (x_0, \ldots, x_n)\). This captures two conjectures (\(r=1\) and \(r=e\)): one of Harbourne-Huneke and one of Bocci-Cooper-Harbourne. We also introduce the symbolic polyhedron of a monomial ideal and use this to explore symbolic powers of non-square-free monomial ideals.</description><subject>Integers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQCq7MTcrPyUxWCMgvTy0qVshPU_DNz8vPzUzMUfBMSU3MKeZhYE0DUqm8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2RgbmFmZGJiYWhMnCoASiUtoA</recordid><startdate>20160124</startdate><enddate>20160124</enddate><creator>Cooper, Susan M</creator><creator>Embree, Robert J D</creator><creator>Hà, Huy Tài</creator><creator>Hoefel, Andrew H</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160124</creationdate><title>Symbolic Powers of Monomial Ideals</title><author>Cooper, Susan M ; Embree, Robert J D ; Hà, Huy Tài ; Hoefel, Andrew H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20786244813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Integers</topic><toplevel>online_resources</toplevel><creatorcontrib>Cooper, Susan M</creatorcontrib><creatorcontrib>Embree, Robert J D</creatorcontrib><creatorcontrib>Hà, Huy Tài</creatorcontrib><creatorcontrib>Hoefel, Andrew H</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cooper, Susan M</au><au>Embree, Robert J D</au><au>Hà, Huy Tài</au><au>Hoefel, Andrew H</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Symbolic Powers of Monomial Ideals</atitle><jtitle>arXiv.org</jtitle><date>2016-01-24</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>We investigate symbolic and regular powers of monomial ideals. For a square-free monomial ideal \(I\) in \(k[x_0, \ldots, x_n]\) we show \(I^{t(m+e-1)-e+r)}\) is a subset of \(M^{(t-1)(e-1)+r-1}(I^{(m)})^t\) for all positive integers \(m\), \(t\) and \(r\), where \(e\) is the big-height of \(I\) and \(M = (x_0, \ldots, x_n)\). This captures two conjectures (\(r=1\) and \(r=e\)): one of Harbourne-Huneke and one of Bocci-Cooper-Harbourne. We also introduce the symbolic polyhedron of a monomial ideal and use this to explore symbolic powers of non-square-free monomial ideals.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2078624481
source Free eJournals
subjects Integers
title Symbolic Powers of Monomial Ideals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T12%3A11%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Symbolic%20Powers%20of%20Monomial%20Ideals&rft.jtitle=arXiv.org&rft.au=Cooper,%20Susan%20M&rft.date=2016-01-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2078624481%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2078624481&rft_id=info:pmid/&rfr_iscdi=true