Symbolic Powers of Monomial Ideals
We investigate symbolic and regular powers of monomial ideals. For a square-free monomial ideal \(I\) in \(k[x_0, \ldots, x_n]\) we show \(I^{t(m+e-1)-e+r)}\) is a subset of \(M^{(t-1)(e-1)+r-1}(I^{(m)})^t\) for all positive integers \(m\), \(t\) and \(r\), where \(e\) is the big-height of \(I\) and...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-01 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate symbolic and regular powers of monomial ideals. For a square-free monomial ideal \(I\) in \(k[x_0, \ldots, x_n]\) we show \(I^{t(m+e-1)-e+r)}\) is a subset of \(M^{(t-1)(e-1)+r-1}(I^{(m)})^t\) for all positive integers \(m\), \(t\) and \(r\), where \(e\) is the big-height of \(I\) and \(M = (x_0, \ldots, x_n)\). This captures two conjectures (\(r=1\) and \(r=e\)): one of Harbourne-Huneke and one of Bocci-Cooper-Harbourne. We also introduce the symbolic polyhedron of a monomial ideal and use this to explore symbolic powers of non-square-free monomial ideals. |
---|---|
ISSN: | 2331-8422 |