A Low-Light Image Enhancement Method Based on Image Degradation Model and Pure Pixel Ratio Prior

Images captured in low-light conditions are prone to suffer from low visibility, which may further degrade the performance of most computational photography and computer vision applications. In this paper, we propose a low-light image degradation model derived from the atmospheric scattering model,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-19
Hauptverfasser: Gu, Zhenfei, Zhang, Dengyin, Chen, Can
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Images captured in low-light conditions are prone to suffer from low visibility, which may further degrade the performance of most computational photography and computer vision applications. In this paper, we propose a low-light image degradation model derived from the atmospheric scattering model, which is simple but effective and robust. Then, we present a physically valid image prior named pure pixel ratio prior, which is a statistical regularity of extensive nature clear images. Based on the proposed model and the image prior, a corresponding low-light image enhancement method is also presented. In this method, we first segment the input image into scenes according to the brightness similarity and utilize a high-efficiency scene-based transmission estimation strategy rather than the traditional per-pixel fashion. Next, we refine the rough transmission map, by using a total variation smooth operator, and obtain the enhanced image accordingly. Experiments on a number of challenging nature low-light images verify the effectiveness and robustness of the proposed model, and the corresponding method can show its superiority over several state of the arts.
ISSN:1024-123X
1563-5147
DOI:10.1155/2018/8178109