On the Finiteness of Attractors for piecewise \(C^2\) Maps of the Interval
We consider piecewise \(C^2\) non-flat maps of the interval and show that, for Lebesgue almost every point, its omega-limit set is either a periodic orbit, a cycle of intervals or the closure of the orbits of a subset of the critical points. In particular, every piecewise \(C^2\) non-flat map of the...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-03 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider piecewise \(C^2\) non-flat maps of the interval and show that, for Lebesgue almost every point, its omega-limit set is either a periodic orbit, a cycle of intervals or the closure of the orbits of a subset of the critical points. In particular, every piecewise \(C^2\) non-flat map of the interval displays only a finite number of non-periodic attractors. |
---|---|
ISSN: | 2331-8422 |