Spicules and their on-disk counterparts, the main driver for solar chromospheric heating?
The question how the outer solar atmosphere is heated from solar photospheric temperatures of about 5800K up to solar chromospheric and coronal temperatures of about 20.000K and millions of degrees respectively, remained without any satisfying answer for centuries. On 4 May 2005, I recorded several...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-05 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The question how the outer solar atmosphere is heated from solar photospheric temperatures of about 5800K up to solar chromospheric and coronal temperatures of about 20.000K and millions of degrees respectively, remained without any satisfying answer for centuries. On 4 May 2005, I recorded several time series of Halpha line scans with the GREGOR Fabry-Perot Interferometer, still deployed at the German Vacuum Tower Telescope (VTT), for different solar limb and on-disk positions as well as for quiet sun at solar disk center. The spatially and temporally highly resolved time series of Halpha line parameters reveal the entire and detailed complexity as well as the overwhelming dynamics of spicules covering the entire solar disk, thus apparently confirming spicules as the potential driver of chromospheric heating for both the Sun and sun-like stars, with an expected mass flux larger than 100 times that of the solar wind. Spicules seem to be the result of the interaction of the highly dynamic photospheric quiet-sun or active-region small-scale magnetic field, which is dominated by convective processes and is predominantly located in intergranular lanes and at meso- or supergranular scales. |
---|---|
ISSN: | 2331-8422 |