Frequentistic approximations to Bayesian prevision of exchangeable random elements
Given a sequence \xi_1, \xi_2,... of X-valued, exchangeable random elements, let q(\xi^(n)) and p_m(\xi^(n)) stand for posterior and predictive distribution, respectively, given \xi^(n) = (\xi_1,..., \xi_n). We provide an upper bound for limsup b_n d_[[X]](q(\xi^(n)), \delta_\empiricn) and limsup b_...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-02 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a sequence \xi_1, \xi_2,... of X-valued, exchangeable random elements, let q(\xi^(n)) and p_m(\xi^(n)) stand for posterior and predictive distribution, respectively, given \xi^(n) = (\xi_1,..., \xi_n). We provide an upper bound for limsup b_n d_[[X]](q(\xi^(n)), \delta_\empiricn) and limsup b_n d_[X^m](p_m(\xi^(n)), \empiricn^m), where \empiricn is the empirical measure, b_n is a suitable sequence of positive numbers increasing to +\infty, d_[[X]] and d_[X^m] denote distinguished weak probability distances on [[X]] and [X^m], respectively, with the proviso that [S] denotes the space of all probability measures on S. A characteristic feature of our work is that the aforesaid bounds are established under the law of the \xi_n's, unlike the more common literature on Bayesian consistency, where they are studied with respect to product measures (p_0)^\infty, as p_0 varies among the admissible determinations of a random probability measure. |
---|---|
ISSN: | 2331-8422 |