Simulated NH^sub 4^^sup +^-N Deposition Inhibits CH^sub 4^ Uptake and Promotes N^sub 2^O Emission in the Meadow Steppe of Inner Mongolia, China

Few studies are conducted to quantify the effects of enhanced N deposition on soil nitrous oxide (N2O) emission and methane (CH4) uptake in the meadow steppe of Inner Mongolia, China. A two-year field experiment was conducted to assess the effects of nitrogen (N) deposition rates (0, 10, and 20 kg N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pedosphere 2017-04, Vol.27 (2), p.306
Hauptverfasser: Liu, Xingren, Zhang, Qingwen, Li, Shenggong, Zhang, Leiming, Ren, Jianqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Few studies are conducted to quantify the effects of enhanced N deposition on soil nitrous oxide (N2O) emission and methane (CH4) uptake in the meadow steppe of Inner Mongolia, China. A two-year field experiment was conducted to assess the effects of nitrogen (N) deposition rates (0, 10, and 20 kg N ha−1 year−1 as (NH4)2SO4) on soil N2O and CH4 fluxes. The seasonal and diurnal variations of soil N2O and CH4 fluxes were determined using the static chamber-gas chromatography method during the two growing seasons of 2008 and 2009. Soil temperature, moisture and mineral N (NH4+-N and NO3−-N) concentration were simultaneously measured. Results showed that low level of (NH4)2SO4 (10 kg N ha−1 year−1) did not significantly affect soil CH4 and N2O fluxes and other variables. High level of (NH4)2SO4 (20 kg N ha−1 year−1) significantly increased soil NO3−-N concentration by 24.1% to 35.6%, decreased soil CH4 uptake by an average of 20.1%, and significantly promoted soil N2O emission by an average of 98.2%. Soil N2O emission responded more strongly to the added N compared to CH4 uptake. However, soil CH4 fluxes were mainly driven by soil moisture, followed by soil NO3−-N concentration. Soil N2O fluxes were mainly driven by soil temperature, followed by soil moisture. Soil inorganic N availability was a key integrator of soil CH4 uptake and N2O emission. These results suggest that the changes of availability of inorganic N induced by the increased N deposition in soil may affect the CH4 and N2O fluxes in the cold semi-arid meadow steppe over the short term.
ISSN:1002-0160
2210-5107