Robust Decentralized Voltage Control of DC-DC Converters with Applications to Power Sharing and Ripple Sharing

This paper addresses the problem of output voltage regulation for multiple DC-DC converters connected to a grid, and prescribes a robust scheme for sharing power among different sources. Also it develops a method for sharing 120 Hz ripple among DC power sources in a prescribed proportion, which acco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-04
Hauptverfasser: Baranwal, Mayank, Salapaka, Srinivasa M, Salapaka, Murti V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper addresses the problem of output voltage regulation for multiple DC-DC converters connected to a grid, and prescribes a robust scheme for sharing power among different sources. Also it develops a method for sharing 120 Hz ripple among DC power sources in a prescribed proportion, which accommodates the different capabilities of DC power sources to sustain the ripple. We present a decentralized control architecture, where a nested (inner-outer) control design is used at every converter. An interesting aspect of the proposed design is that the analysis and design of the entire multi-converter system can be done using an equivalent single converter system, where the multi-converter system inherits the performance and robustness achieved by a design for the single-converter system. Another key aspect of this work is that the voltage regulation problem is addressed as a disturbance-rejection problem, where {\em unknown} load current is viewed as an external signal, and thus, no prior information is required on the nominal loading conditions. The control design is obtained using robust optimal-control framework. Case studies presented show the enhanced performance of prescribed optimal controllers.
ISSN:2331-8422