A problem involving the \(p\)-Laplacian operator

Using a variational technique we guarantee the existence of a solution to the \emph{resonant Lane-Emden} problem \(-\Delta_p u=\lambda |u|^{q-2}u\), \(u|_{\partial\Omega}=0\) if and only if a solution to \(-\Delta_p u=\lambda |u|^{q-2}u+f\), \(u|_{\partial\Omega}=0\), \(f\in L^{p'}(\Omega)\) (\...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-01
Hauptverfasser: Giri, Ratan K, Choudhuri, D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using a variational technique we guarantee the existence of a solution to the \emph{resonant Lane-Emden} problem \(-\Delta_p u=\lambda |u|^{q-2}u\), \(u|_{\partial\Omega}=0\) if and only if a solution to \(-\Delta_p u=\lambda |u|^{q-2}u+f\), \(u|_{\partial\Omega}=0\), \(f\in L^{p'}(\Omega)\) (\(p'\) being the conjugate of \(p\)), exists for \(q\in (1,p)\bigcup (p,p^{*})\) under a certain condition for both the cases, i.e., \(1
ISSN:2331-8422