Optimal Bounds for the No-Show Paradox via SAT Solving

Voting rules allow multiple agents to aggregate their preferences in order to reach joint decisions. Perhaps one of the most important desirable properties in this context is Condorcet-consistency, which requires that a voting rule should return an alternative that is preferred to any other alternat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-02
Hauptverfasser: Brandt, Felix, Geist, Christian, Peters, Dominik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Voting rules allow multiple agents to aggregate their preferences in order to reach joint decisions. Perhaps one of the most important desirable properties in this context is Condorcet-consistency, which requires that a voting rule should return an alternative that is preferred to any other alternative by some majority of voters. Another desirable property is participation, which requires that no voter should be worse off by joining an electorate. A seminal result in social choice theory by Moulin (1998) has shown that Condorcet-consistency and participation are incompatible whenever there are at least 4 alternatives and 25 voters. We leverage SAT solving to obtain an elegant human-readable proof of Moulin's result that requires only 12 voters. Moreover, the SAT solver is able to construct a Condorcet-consistent voting rule that satisfies participation as well as a number of other desirable properties for up to 11 voters, proving the optimality of the above bound. We also obtain tight results for set-valued and probabilistic voting rules, which complement and significantly improve existing theorems.
ISSN:2331-8422