On O'Grady's generalized Franchetta conjecture

We study relative zero cycles on the universal polarized \(K3\) surface \(X \to \mathcal{F}_g\) of degree \(2g - 2\). It was asked by O'Grady if the restriction of any class in \(\mathrm{CH}^2(X)\) to a closed fiber \(X_s\) is a multiple of the Beauville-Voisin canonical class \(c_{X_s} \in \ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-04
Hauptverfasser: Pavic, Nebojsa, Shen, Junliang, Yin, Qizheng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study relative zero cycles on the universal polarized \(K3\) surface \(X \to \mathcal{F}_g\) of degree \(2g - 2\). It was asked by O'Grady if the restriction of any class in \(\mathrm{CH}^2(X)\) to a closed fiber \(X_s\) is a multiple of the Beauville-Voisin canonical class \(c_{X_s} \in \mathrm{CH}_0(X_s)\). Using Mukai models, we give an affirmative answer to this question for \(g \leq 10\) and \(g = 12, 13, 16, 18, 20\).
ISSN:2331-8422