Robust multicolor single photon emission from point defects in hexagonal boron nitride
Hexagonal boron nitride (hBN) is an emerging two dimensional material for quantum photonics owing to its large bandgap and hyperbolic properties. Here we report a broad range of multicolor room temperature single photon emissions across the visible and the near infrared spectral ranges from point de...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-03 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hexagonal boron nitride (hBN) is an emerging two dimensional material for quantum photonics owing to its large bandgap and hyperbolic properties. Here we report a broad range of multicolor room temperature single photon emissions across the visible and the near infrared spectral ranges from point defects in hBN multilayers. We show that the emitters can be categorized into two general groups, but most likely possess similar crystallographic structure. We further show two approaches for engineering of the emitters using either electron beam irradiation or annealing, and characterize their photophysical properties. The emitters exhibit narrow line widths of sub 10 nm at room temperature, and a short excited state lifetime with high brightness. Remarkably, the emitters are extremely robust and withstand aggressive annealing treatments in oxidizing and reducing environments. Our results constitute the first step towards deterministic engineering of single emitters in 2D materials and hold great promise for the use of defects in boron nitride as sources for quantum information processing and nanophotonics. |
---|---|
ISSN: | 2331-8422 |