The obstacle problem for nonlinear integro-differential operators

We investigate the obstacle problem for a class of nonlinear equations driven by nonlocal, possibly degenerate, integro-differential operators, whose model is the fractional \(p\)-Laplacian operator with measurable coefficients. Amongst other results, we will prove both the existence and uniqueness...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-04
Hauptverfasser: Korvenpaa, Janne, Kuusi, Tuomo, Palatucci, Giampiero
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the obstacle problem for a class of nonlinear equations driven by nonlocal, possibly degenerate, integro-differential operators, whose model is the fractional \(p\)-Laplacian operator with measurable coefficients. Amongst other results, we will prove both the existence and uniqueness of the solutions to the obstacle problem, and that these solutions inherit regularity properties, such as boundedness, continuity and H\"older continuity (up to the boundary), from the obstacle.
ISSN:2331-8422