On complex homogeneous singularities

In this article, we consider the singularity of an arbitrary homogeneous polynomial with complex coefficients \(f(x_0,\dots,x_n)\) at the origin of \(\mathbb C^{n+1}\), via the study of the monodromy characteristic polynomials \(\Delta_l(t)\), and the relation between the monodromy zeta function and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-11
Hauptverfasser: Le Quy Thuong, Nguyen Phu Hoang Lan, Tai, Pho Duc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Le Quy Thuong
Nguyen Phu Hoang Lan
Tai, Pho Duc
description In this article, we consider the singularity of an arbitrary homogeneous polynomial with complex coefficients \(f(x_0,\dots,x_n)\) at the origin of \(\mathbb C^{n+1}\), via the study of the monodromy characteristic polynomials \(\Delta_l(t)\), and the relation between the monodromy zeta function and the Hodge spectrum of the singularity. We go further with \(\Delta_1(t)\) in the case \(n=2\). This work is based on knowledge of multiplier ideals and local systems.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076995155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076995155</sourcerecordid><originalsourceid>FETCH-proquest_journals_20769951553</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ8c9TSM7PLchJrVDIyM_NT0_NS80vLVYozsxLL81JLMosyUwt5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDczNLS1NDoOHEqQIADFgvTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076995155</pqid></control><display><type>article</type><title>On complex homogeneous singularities</title><source>Free E- Journals</source><creator>Le Quy Thuong ; Nguyen Phu Hoang Lan ; Tai, Pho Duc</creator><creatorcontrib>Le Quy Thuong ; Nguyen Phu Hoang Lan ; Tai, Pho Duc</creatorcontrib><description>In this article, we consider the singularity of an arbitrary homogeneous polynomial with complex coefficients \(f(x_0,\dots,x_n)\) at the origin of \(\mathbb C^{n+1}\), via the study of the monodromy characteristic polynomials \(\Delta_l(t)\), and the relation between the monodromy zeta function and the Hodge spectrum of the singularity. We go further with \(\Delta_1(t)\) in the case \(n=2\). This work is based on knowledge of multiplier ideals and local systems.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Polynomials ; Singularities</subject><ispartof>arXiv.org, 2017-11</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Le Quy Thuong</creatorcontrib><creatorcontrib>Nguyen Phu Hoang Lan</creatorcontrib><creatorcontrib>Tai, Pho Duc</creatorcontrib><title>On complex homogeneous singularities</title><title>arXiv.org</title><description>In this article, we consider the singularity of an arbitrary homogeneous polynomial with complex coefficients \(f(x_0,\dots,x_n)\) at the origin of \(\mathbb C^{n+1}\), via the study of the monodromy characteristic polynomials \(\Delta_l(t)\), and the relation between the monodromy zeta function and the Hodge spectrum of the singularity. We go further with \(\Delta_1(t)\) in the case \(n=2\). This work is based on knowledge of multiplier ideals and local systems.</description><subject>Polynomials</subject><subject>Singularities</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ8c9TSM7PLchJrVDIyM_NT0_NS80vLVYozsxLL81JLMosyUwt5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDczNLS1NDoOHEqQIADFgvTA</recordid><startdate>20171113</startdate><enddate>20171113</enddate><creator>Le Quy Thuong</creator><creator>Nguyen Phu Hoang Lan</creator><creator>Tai, Pho Duc</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171113</creationdate><title>On complex homogeneous singularities</title><author>Le Quy Thuong ; Nguyen Phu Hoang Lan ; Tai, Pho Duc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20769951553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Polynomials</topic><topic>Singularities</topic><toplevel>online_resources</toplevel><creatorcontrib>Le Quy Thuong</creatorcontrib><creatorcontrib>Nguyen Phu Hoang Lan</creatorcontrib><creatorcontrib>Tai, Pho Duc</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le Quy Thuong</au><au>Nguyen Phu Hoang Lan</au><au>Tai, Pho Duc</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On complex homogeneous singularities</atitle><jtitle>arXiv.org</jtitle><date>2017-11-13</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>In this article, we consider the singularity of an arbitrary homogeneous polynomial with complex coefficients \(f(x_0,\dots,x_n)\) at the origin of \(\mathbb C^{n+1}\), via the study of the monodromy characteristic polynomials \(\Delta_l(t)\), and the relation between the monodromy zeta function and the Hodge spectrum of the singularity. We go further with \(\Delta_1(t)\) in the case \(n=2\). This work is based on knowledge of multiplier ideals and local systems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2076995155
source Free E- Journals
subjects Polynomials
Singularities
title On complex homogeneous singularities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A16%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20complex%20homogeneous%20singularities&rft.jtitle=arXiv.org&rft.au=Le%20Quy%20Thuong&rft.date=2017-11-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2076995155%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076995155&rft_id=info:pmid/&rfr_iscdi=true