On complex homogeneous singularities

In this article, we consider the singularity of an arbitrary homogeneous polynomial with complex coefficients \(f(x_0,\dots,x_n)\) at the origin of \(\mathbb C^{n+1}\), via the study of the monodromy characteristic polynomials \(\Delta_l(t)\), and the relation between the monodromy zeta function and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-11
Hauptverfasser: Le Quy Thuong, Nguyen Phu Hoang Lan, Tai, Pho Duc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we consider the singularity of an arbitrary homogeneous polynomial with complex coefficients \(f(x_0,\dots,x_n)\) at the origin of \(\mathbb C^{n+1}\), via the study of the monodromy characteristic polynomials \(\Delta_l(t)\), and the relation between the monodromy zeta function and the Hodge spectrum of the singularity. We go further with \(\Delta_1(t)\) in the case \(n=2\). This work is based on knowledge of multiplier ideals and local systems.
ISSN:2331-8422