On complex homogeneous singularities
In this article, we consider the singularity of an arbitrary homogeneous polynomial with complex coefficients \(f(x_0,\dots,x_n)\) at the origin of \(\mathbb C^{n+1}\), via the study of the monodromy characteristic polynomials \(\Delta_l(t)\), and the relation between the monodromy zeta function and...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we consider the singularity of an arbitrary homogeneous polynomial with complex coefficients \(f(x_0,\dots,x_n)\) at the origin of \(\mathbb C^{n+1}\), via the study of the monodromy characteristic polynomials \(\Delta_l(t)\), and the relation between the monodromy zeta function and the Hodge spectrum of the singularity. We go further with \(\Delta_1(t)\) in the case \(n=2\). This work is based on knowledge of multiplier ideals and local systems. |
---|---|
ISSN: | 2331-8422 |