Effect of annealing temperatures on the electrical conductivity and dielectric properties of Ni1.5Fe1.5O4 spinel ferrite prepared by chemical reaction at different pH values

The electrical conductivity and dielectric properties of Ni1.5Fe1.5O4 ferrite has been controlled by varying the annealing temperature of the chemical routed samples. The frequency activated conductivity obeyed Jonschers power law and universal scaling suggested semiconductor nature. An unusual meta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-11
Hauptverfasser: Aneesh Kumar, K S, Bhowmik, R N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The electrical conductivity and dielectric properties of Ni1.5Fe1.5O4 ferrite has been controlled by varying the annealing temperature of the chemical routed samples. The frequency activated conductivity obeyed Jonschers power law and universal scaling suggested semiconductor nature. An unusual metal like state has been revealed in the measurement temperature scale in between two semiconductor states with different activation energy. The metal like state has been affected by thermal annealing of the material. The analysis of electrical impedance and modulus spectra has confirmed non-Debye dielectric relaxation with contributions from grains and grain boundaries. The dielectric relaxation process is thermally activated in terms of measurement temperature and annealing temperature of the samples. The hole hopping process, due to presence of Ni3+ ions in the present Ni rich ferrite, played a significant role in determining the thermal activated conduction mechanism. This work has successfully applied the technique of a combined variation of annealing temperature and pH value during chemical reaction for tuning electrical parameters in a wide range; for example dc limit of conductivity 10power(-4) -10power(-12) S/cm, and unusually high activation energy 0.17-1.36 eV.
ISSN:2331-8422