Normal Convergence Using Malliavin Calculus With Applications and Examples

We prove the chain rule in the more general framework of the Wiener-Poisson space, allowing us to obtain the so-called Nourdin-Peccati bound. From this bound we obtain a second-order Poincare-type inequality that is useful in terms of computations. For completeness we survey these results on the Wie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-12
1. Verfasser: Juan Jose Viquez R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Juan Jose Viquez R
description We prove the chain rule in the more general framework of the Wiener-Poisson space, allowing us to obtain the so-called Nourdin-Peccati bound. From this bound we obtain a second-order Poincare-type inequality that is useful in terms of computations. For completeness we survey these results on the Wiener space, the Poisson space, and the Wiener-Poisson space. We also give several applications to central limit theorems with relevant examples: linear functionals of Gaussian subordinated fields (where the subordinated field can be processes like fractional Brownian motion or the solution of the Ornstein-Uhlenbeck SDE driven by fractional Brownian motion), Poisson functionals in the first Poisson chaos restricted to infinitely many \small" jumps (particularly fractional Levy processes) and the product of two Ornstein-Uhlenbeck processes (one in the Wiener space and the other in the Poisson space). We also obtain bounds for their rate of convergence to normality.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076974888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076974888</sourcerecordid><originalsourceid>FETCH-proquest_journals_20769748883</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwScCzH9i6OUigg6KY4l1FhTbpOY2xQfXwcfwOkM35mRiKfpJhEZ5wsSI_aMMV6UPM_TiBzP1g8SaGXNpHynTKvoFbXp6EkCaDlpQysJbYCA9KbHJ905B7qVo7YGqTR3Wr_l4EDhiswfElDFvy7Jel9fqkPivH0FhWPT2-DNlxrOymJbZkKI9L_rA9BDPPE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076974888</pqid></control><display><type>article</type><title>Normal Convergence Using Malliavin Calculus With Applications and Examples</title><source>Free E- Journals</source><creator>Juan Jose Viquez R</creator><creatorcontrib>Juan Jose Viquez R</creatorcontrib><description>We prove the chain rule in the more general framework of the Wiener-Poisson space, allowing us to obtain the so-called Nourdin-Peccati bound. From this bound we obtain a second-order Poincare-type inequality that is useful in terms of computations. For completeness we survey these results on the Wiener space, the Poisson space, and the Wiener-Poisson space. We also give several applications to central limit theorems with relevant examples: linear functionals of Gaussian subordinated fields (where the subordinated field can be processes like fractional Brownian motion or the solution of the Ornstein-Uhlenbeck SDE driven by fractional Brownian motion), Poisson functionals in the first Poisson chaos restricted to infinitely many \small" jumps (particularly fractional Levy processes) and the product of two Ornstein-Uhlenbeck processes (one in the Wiener space and the other in the Poisson space). We also obtain bounds for their rate of convergence to normality.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Brownian motion ; Convergence ; Metric space ; Normality</subject><ispartof>arXiv.org, 2017-12</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Juan Jose Viquez R</creatorcontrib><title>Normal Convergence Using Malliavin Calculus With Applications and Examples</title><title>arXiv.org</title><description>We prove the chain rule in the more general framework of the Wiener-Poisson space, allowing us to obtain the so-called Nourdin-Peccati bound. From this bound we obtain a second-order Poincare-type inequality that is useful in terms of computations. For completeness we survey these results on the Wiener space, the Poisson space, and the Wiener-Poisson space. We also give several applications to central limit theorems with relevant examples: linear functionals of Gaussian subordinated fields (where the subordinated field can be processes like fractional Brownian motion or the solution of the Ornstein-Uhlenbeck SDE driven by fractional Brownian motion), Poisson functionals in the first Poisson chaos restricted to infinitely many \small" jumps (particularly fractional Levy processes) and the product of two Ornstein-Uhlenbeck processes (one in the Wiener space and the other in the Poisson space). We also obtain bounds for their rate of convergence to normality.</description><subject>Brownian motion</subject><subject>Convergence</subject><subject>Metric space</subject><subject>Normality</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwScCzH9i6OUigg6KY4l1FhTbpOY2xQfXwcfwOkM35mRiKfpJhEZ5wsSI_aMMV6UPM_TiBzP1g8SaGXNpHynTKvoFbXp6EkCaDlpQysJbYCA9KbHJ905B7qVo7YGqTR3Wr_l4EDhiswfElDFvy7Jel9fqkPivH0FhWPT2-DNlxrOymJbZkKI9L_rA9BDPPE</recordid><startdate>20171212</startdate><enddate>20171212</enddate><creator>Juan Jose Viquez R</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171212</creationdate><title>Normal Convergence Using Malliavin Calculus With Applications and Examples</title><author>Juan Jose Viquez R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20769748883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Brownian motion</topic><topic>Convergence</topic><topic>Metric space</topic><topic>Normality</topic><toplevel>online_resources</toplevel><creatorcontrib>Juan Jose Viquez R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Juan Jose Viquez R</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Normal Convergence Using Malliavin Calculus With Applications and Examples</atitle><jtitle>arXiv.org</jtitle><date>2017-12-12</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>We prove the chain rule in the more general framework of the Wiener-Poisson space, allowing us to obtain the so-called Nourdin-Peccati bound. From this bound we obtain a second-order Poincare-type inequality that is useful in terms of computations. For completeness we survey these results on the Wiener space, the Poisson space, and the Wiener-Poisson space. We also give several applications to central limit theorems with relevant examples: linear functionals of Gaussian subordinated fields (where the subordinated field can be processes like fractional Brownian motion or the solution of the Ornstein-Uhlenbeck SDE driven by fractional Brownian motion), Poisson functionals in the first Poisson chaos restricted to infinitely many \small" jumps (particularly fractional Levy processes) and the product of two Ornstein-Uhlenbeck processes (one in the Wiener space and the other in the Poisson space). We also obtain bounds for their rate of convergence to normality.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2076974888
source Free E- Journals
subjects Brownian motion
Convergence
Metric space
Normality
title Normal Convergence Using Malliavin Calculus With Applications and Examples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A48%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Normal%20Convergence%20Using%20Malliavin%20Calculus%20With%20Applications%20and%20Examples&rft.jtitle=arXiv.org&rft.au=Juan%20Jose%20Viquez%20R&rft.date=2017-12-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2076974888%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076974888&rft_id=info:pmid/&rfr_iscdi=true